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Valley ventilation by cross winds 
By ROBERT C. BELL AND RORY 0. R. Y. THOMPSON? 
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An initial thermal stratification may be swept out of a valley if a cross-wind is strong 
enough: the valley is then said to be ventilated. Numerical and laboratory experiments 
indicate that the critical parameter is the Froude number, F = ;ii/Nh, where ii is the 
mean horizontal velocity above the crest of the valley sides, N is the Brunt-VglisZlla or 
bouyancy frequency of the thermal stratification in the valley air and h is the height 
of the valley walls. Ventilation occurs whenever the Froude number exceeds a value 
of 1.3. 

1. Introduction 
Under conditions of strongly stable thermal stratification and light winds, air can 

be trapped in a valley, with implications for both local weather and health. One of the 
authors (R. T.) was in the Willamette Valley, Oregon, U.S.A. in November 1969 when 
a dense fog formed and stayed for 9 days (Green 1970). Within the fog, it waa 
unpleasantly dark, wet and cold: so cold that thick rime formed on exposed objects. 
Furthermore, it stank from the sulphur emissions from a paper mill in the valley. 
Yet at  a height of about 100 m above the valley floor, the air was clean with the sun 
and stars shining from perfectly clear skies. 

A similar event was experienced by the same author for a week in February 1976 
in Bergen, Norway: from the sides of the valley above the city, distant mountains were 
seen under bright sunlight, but the city, only a mile away, was obscured by the thickest, 
brownest vehicle smog the author had ever had the misfortune to experience. 

In October 1948, a smog persisted for a week in the industrial areas of the Monon- 
gahela Valley, Pennsylvania, U.S.A., causing illness to 42 Ol0 of the population and 
some deaths (Ashe 1952). Normally, the meteorological conditions in the 120 m deep 
valley are such that the air is well cleaned during the day but stagnates at  night, but 
on this occasion the valley was not ventilated for a week resulting in a disaster to the 
health of many people. 

Upon considering other climate effects as well, such as the frost damage to fruit 
crops in valleys through lack of ventilation (Geiger 1965, p. 394), it  can be seen that 
ventilation of a valley, or its lack, is an important meteorological subject. 

Previously Kaps (1955) attempted to quantify the degree of ventilation in a valley 
in terms of the valley geometry, but omitted theimportant factors of thermal stratifi- 
cation and ambient wind speed. Yoshino (1957) observed the winds across several 
valleys, finding both stagnant and sweeping flows. He fitted to the data an equation 
for the wind speed as a function of the distance down the slope, without taking into 
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IT 1 
FIGURE 1. Valley shape for the numerical model. Only one wavelength (L) waa used. 

account the stability. Cox (1977) found observationally that emissions from a chimney 
in a valley could reach ground level outside the valley, whereas emissions from a 
similar chimney on a plain might not reach the ground, and thus a chimney in a 
valley is effectively shorter than one on a plain. If the emissions are in a recirculation 
region, they would be trapped in the valley, but even if the chimney reached above 
the recirculation, the emissions may reach ground level on the valley sides. However, 
no physical criteria were given for separating the various possibilities. 

Tang (1976) considered a linear analytical model of the interaction between a large- 
scale flow across a valley and the thermal stratification, but with specified tempera- 
tures at  the ground. A region of reversed flow was found on the upstream slope in 
day-time conditions and on the downstream slope in night-time conditions. 
Kitabayashi (1977) studied the region of stagnant flow upstream of a ridge in the at- 
mosphere and in a wind tunnel. He concluded that stagnant flow occurs when a Froude 
number is less than 2.3. This value differs from the value of 1.3 found in this paper, 
perhaps because of the different shaped topography, different upper and side boundary 
conditions and different definition of the velocity scale used in the Froude number. 

In this paper, a simple two-dimensional model is investigated to find out when a 
cross-valley wind will sweep out an initial thermal stratification. Our primary interest 
is in strongly stratified flows, where the effects of turbulence are small. Figure 1 shows 
a general view of the geometry. The key assumption is that the topography and the 
flow are periodic in the horizontal (x) direction with wavelength L. This obviates the 
major difficulty of specifying the inflow conditions in the presence of upstream 
influence (Baines 1977). The top of the model can be taken as representing an inversion 
which acts as a barrier between the flow of interest and the flow above it. 

In  the numerical experiments, only one period of the topography is used and the 
equations are simplified by making the Boussinesq, incompressible and inviscid 
assumptions. In  the laboratory experiments, a symmetric sawtooth shaped obstacle 
consisting of six crests and five troughs was towed through a tank, with measurements 
being made above the centre of the obstacle, where the flow is close to periodic. 
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2. The numerical models 
The dependent variables for the numerical models are the horizontal and vertical 

velocity components u and w, p ,  the perturbation pressure divided by a reference 
density, and the perturbation potential temperature, T .  The equations used in the 
numerical integration are ut+u.vu = -ps, 

T,+u.VT+wI' = 0, (2) 

v.u = 0, (3) 

wt+U.Vw = -pB+gaT, (44 

0 = -pB+gaT, (4 b)  

where t is time, I' is the basic potential temperature lapse rate, g is gravitational 
acceleration and a is the coefficient of thermal expansion. Equation (4a) is the full 
equation for the vertical velocity component, while equation (4b) is derived from it by 
making the hydrostatic assumption. 

The numerical models employ finite differences on a staggered grid. To simplify the 
computations, the lower boundary is forced to pass through grid points and to have 
a slope of 0 or f AzlAx, where AZ and Ax are the vertical and horizontal grid intervals 
respectively. For most of the computations, the second upwind flux form of the 
differences was used with the primitive equations (Roache 1972, p. 73). In  this case the 
hydrostatic equation, (4b), was used. Equations (1) and (2) were used as prediction 
equations and (3) and (4 b )  as diagnostic equations for w and p .  Mahrer & Pielke (1  978) 
have shown that upstream differencing is quite accurate for mesoscale problems similar 
to the valley situation considered here. For some of the runs, the full equation for the 
vertical velocity component, (4a), was used, i.e. the hydrobtatic approximation was not 
made. In  this case, a stream function and vorticity formulation was integrated wing 
the Arakawa (1966) Jacobian, but retaining the upwind flux form for the potential 
temperature equation. Equation (2) and the vorticity equation derived from (1) and 
(4a) were used as prediction equations, and a Poisson equation was solved to obtain 
the stream function and hence u and w from the vorticity. Figure 1 shows the lower 
boundary for a typical run. Basically, it  is a sawtooth shape, but points on the crests 
and troughs have been removed to avoid strong excitation of the higher wavenumber 
components which might have caused trouble with the finite differences. For a typical 
run with total height D (the distance from the bottom of the valley to the top of the 
model) of 1250 m, hill height h of 500 m and length L of 4 km, a grid of 20 horizontal 
and 21 vertical points was used, with Ax = 200 m and AZ = 62.5 m. 

The top of the model is assumed to be a free slip rigid lid, so that the vertical velocity 
and heat flux are both zero there. A t  the lower boundary, the heat flux is zero, and near 
the boundary provision is made to include a heat source or sink, which in this series of 
experiments is taken as zero. The free slip condition w(x, h (x ) )  = u(x ,  h (x) )dh(z ) /dx  is 
used a t  the surface; h(x) is the height of the valley wall above the level of the valley 
bottom (0 < h(x )  < h) .  This is a reasonable condition if the lower boundary is con- 
sidered to lie at  some distance above the actual ground outside a thin boundary layer 
where viscosity is important. The free slip assumption is strengthened by the im- 
position of stable thermal stratification conditions under which the surface drag is 



760 R. C. Bell and R. 0. R. Y .  Thompson 

FIQURE 2. Numerical model with upwind differencing. Streamlines at 4 h for a typical stagnation 
case with D / h  = 2.6 and F = 0.866. Vertical exaggeration for this figure and figures 3 and 4 
is 3.2: 1. 

expected to be very low anyway. Apart from the artificial viscosity inherent in the finite 
differences, no friction is included in these integrations. Initially, a linear thermal 
stratification is prescribed, and the horizontal velocity component is taken to be 
independent of depth, i.e. u(z) = Q/(D-h(x ) ) ,  where Q is the prescribed constant 
volume flux. The implementation of the periodic lateral boundary conditions is 
straightforward. For the upwind hydrostatic model, one other continuity condition 
is needed to close the system; this is constant volume flux across any vertical section. 
This condition corrects the instability problems Thyer (1966) had with his second 
model, and in manyrespects the present hydrostatic model is similar to it. At each time 
step, the horizontal velocity component u is predicted and then adjusted by a constant 
amount for each vertical column so that the horizontal volume flux is still the con- 
stant Q .  In  this way the continuity condition is satisfied. The adjustment is necessary 
and valid because the hydrostatic equation for the pressure specifies only the vertical 
pressure gradient, Using an arbitrary pressure datum for each column and integrating 
the diagnostic equation means that there is an error in the horizontal pressure 
gradient, which is constant for each column, and a similar error in the predicted 
horizontal velocity component. The velocity error is corrected by the procedure given 
above. For the Arakawa non-hydrostatic model, the continuity equation is auto- 
matically satisfied because of the stream function formulation of vorticity. 

For the time stepping, the third-order predictor-corrector scheme of Thompson 
(1 979) is used. A timestep of 6: s was found to be stable for integrations with maximum 



Valley ventilation by crms winds 761 

FIQURE 3. Numerical model with upwind differencing. Contours of potential 
temperature at 4 h for a stagnation case with Dlh  = 2.5 and F = 0.856. 

velocities below about 10 m s-l, but when higher velocities occurred, a 2-6 s step was 
necessary. 

3. Results from the numerical model 
The main result sought from the numerical experiments is the condition under which 

stagnant flow can exist in the steady state. The term stagnant flow is used here to 
cover both true stagnant flow where the velocity is near zero, and any situation where 
the streamline on the crest becomes separated at some point on the valley wall so that 
there is a closed circulation cell near the valley floor. The term sweeping is used to 
describe flows with no stagnant or reversed regions. Two parameters of the flow were 
varied. The first, D / h  is the ratio of the total depth to the crest to trough depth of the 
valley, and was varied from 1.376 to 10. The second is the Froude number F = %/Nh, 
where ;li = Q / ( D  - h) is the mean velocity over the crest, Q being the constant volume 
flux, N is the Brunt-Vaisala frequency for the basic stratification and h is the crest to 
trough depth. In the experiments, F was varied from 0.26 to infinity (corresponding to 
no stratification). 

The aspect ratio D / L  was varied in some runs, but for the hydrostatic model a 
simple rescaling of the results brought them back into coincidence. Specifically, if two 
integrations are carried out with horizontal length scales L and X, with all other 
parameters the same except those that depend on L (such as the grid length), then at 
times t and t X / L  and positions ( x , z )  and ( x X / L , z )  respectively, the solutions are 
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F I a m  4. Numerical model with upwind differencing. Streamlines at 1 h 
for a typical sweeping flow with Dlh  = 2.5 and F = 1.712. 

found to be (u, w,  T , p )  and (u, w L / X ,  T , p )  respectively. This scaling shows that the 
valley width does not alter the results; it  is the vertical length scales that matter. This 
argument applies only to the hydrostatic model, so that the results are only inde- 
pendent of the horizontal length scale when the hydrostatic approximation is valid. 
If equation (4a) is non-dimensionalized using scales L, h, Ti, and I?, then it is found that 
the non-hydrostatic terms are of order (Fh/L)2  of the hydrostatic terms. Almost all of 
the integrations of the hydrostatic upstream-differenced model have (Fh/L)2  < 0.1, 
with the parameter exceeding 0.1 only for large values of F with small values of D/h .  
Thus the hydrostatic assumption is valid for all but a few runs of this model. With the 
non-hydrostatic model, some integrations were carried out with the horizontal length 
scale halved, with values of (J'h/L)2 up to 0.15; little difference was observed compared 
with the integrations with the larger horizontal length scale, except when D l h  was 
small. In  the atmosphere under stable conditions, F is usually O( 1) or less, and h/L  in 
valleys is almost always less than, say, 0.3, so that (Fh/L)2 < 0-1, and thus the 
hydrostatic assumption is valid. 

Most of the model integrations were extended to 1 h model time, except for a few 
sample and critical cases which were run up to 4 h. By 1 h, a quasi-steady state was 
usually reached, and the result could then be put confidently into one of the categories 
of stagnation or sweeping. The 1 h cut off is reasonable in view of the longest time 
scale in the model, namely the advection scale LD/& which is less than 22 min for all 
experiments. 

Figure 2 shows the streamlines for a typical stagnation case with D / h  = 2.5 and 
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FIGVRE 5. Breakdown of numerical results into sweeping or stagnant flows as a function of D / h  
and F .  Upwind scheme : + , stagnant; ( , sweeping. Arakawa scheme : x , stagnant ; c:, sweeping. 
Note that the ordinate starts at Djh = 1. 

F = 0.856 for the upstream hydrostatic model. There is a large area in the valley where 
there is almost no flow, the velocities being less than 0.5 m s- compared with 3- 6 m s-l 
outside. In  this case, the horizontal velocity component above the crest increases 
slowly with height, but in other cases the situation is reversed with a marked jet over the 
ridge with lower velocities above. From an initial state with no stagnation, the stag- 
nation region first appears a t  a time of 5 min, and grows rapidly so that at  20 min its 
depth is 90.6 of its depth at  1 h. In  general, the depth of the stagnant region at  
steady state increases aa F is decreased from run to run. Figure 3 shows the isotherms 
of potential temperature for this same case. The initial potential temperature strati- 
fication is largely unchanged, so that stagnation occurs here without any marked 
inversion of actual temperature at the top of the stagnant region. 

The streamlines for a typical sweeping flow are shown in figure 4, with D / h  = 2.5 
and F = 1.712 for the upstream hydrostatic model. The flow pattern is very similar to 
a potential flow for a homogeneous fluid. The isotherms of potential temperature (not 
shown) show I L  similar pattern to the stream function, aa would be expected. 

When D / h  is small, no sweeping flows could be produced by the hydrostatic model, 
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even for infinite Froude number. In  these cases, there is usually a very strong tempera- 
ture gradient a t  the top of the stagnant region, with weaker gradients below. For the 
non-hydrostatic model, the results for small Dlh  depend on the horizontal length scale, 
with the flows tending toward stagnation as the length scale is decreased. 

The results of the numerical experiments are summarized in figure 5, which shows 
all runs on a D / h  vs. F diagram. Note that the ordinate D / h  starts at 1.0, since D > h. 
The results were divided into the two categories of ‘stagnant’ if there existed a 
separated flow region after 1 h, and ‘sweeping’ if there did not. In  caws near the 
critical line, the flow takes longer to settle down to a state in which it can be put 
definitely into one or the other of the categories. In some of these cases the decision was 
based on the flow at a time greater than 1 h, and in all these cases there is some 
uncertainty in the classification. It can be seen from the diagram that there is 
reasonably good agreement between the results of the two models. 

For D / h  greater than about 1.8, the critical F value can be approximated by a 
constant of 1-3. Stagnant flow occurs when F is less than this critical value, and 
sweeping flow when F exceeds this value, for both the upwind and Arakawa formu- 
lations of the model. This general behaviour could be expected from the form of F. 
Low values of F imply that the mean velocity is relatively slow and the thermal 
stratification is relatively strong, so that there is insufficient kinetic energy in the flow 
to lift the dense fluid near the valley floor over the crest, and stagnation results. In 
contrast, high F values imply that there is sufficient kinetic energy to sweep the 
denser fluid in the valley over the crest. 

For D / h  less than about 1.8, stagnation flows predominate, but the results depend 
on the horizontal length scale. With small values of D / h  such as this, the top of the 
model region is close to the crest level, and the flow is forced through a narrow gap over 
the crest. The numerical results may be less realistic in this situation because of the 
greater numerical diffusion present, and because the hydrostatic approximation used 
with the upstream model becomes less tenable here. However, the general result of 
stagnation can be expected since the flow over the crest acts like a jet and continues 
across the valley with little expansion, and the valley is too deep for the denser fluid 
to be lifted over the crest. Low values of D / h  are not expected to be relevant to the real 
atmosphere since even if an inversion could be found so close to the crest level, it 
would not behave as a rigid lid. 

Kitabayashi (1977) also found that the critical Froude number for flow over a single 
step was approximately constant for values of Dlh  between 4 and 12.5. Thus the 
critical Froude number for moderate to  large D / h  does not depend on either D,  the 
total depth, nor on L, the horizontal length scale. 

For some runs, the initial horizontal velocity component was taken as u = ii above 
the crest level, and zero elsewhere, corresponding to an initially stagnant state rather 
than a sweeping state. The stagnant initial state is in fact a steady-state solution of 
the equations and boundary conditions, but is an unstable state, being subject to the 
Kelvin-Helmholtz instability. When the initial state was perturbed, then the inte- 
grations were found to produce steady-state solutions similar to those produced from 
the sweeping initial conditions. 
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FIQURE 7. Breakdown of laboratory results into sweeping or stagnant flows as a function of 
D / h  and F .  + , stagnant; C ,  sweeping; JC , rotor. Note that the ordinate starts at D / h  = 1. 

4. Results from laboratory experiments 
The laboratory experiments were undertaken to substantiate the numerical 

solutions. The tank dimensions and other details are the same as Baines (1977). The 
tank was filled with a linearly stratified salt solution with a free surface. The towed 
sawtooth shape consisted of six crests and five troughs. The crests were 4 cm high and 
40 cm apart. 

In  the early runs, the density profiles were determined by a refractometer. In  later 
runs, an automated probe was used and provided a much more convenient check on 
the linearity of the density profiles. The Froude number was based on the actual 
density difference between 1.5 and 6 cm above the bottom, and the mean velocity ii 
over the crest given by ZZ = I'D/(D - h) ,  where C is the towing speed. 

Figure 6 (plate 1 )  shows a typical flow with a stagnation region for D/h = 8.2, and 
F = 0-79. It is quite similar to figure 2 €or the numerical model, after allowing for the 
different scale for x and z in figure 2. Sweeping flows occurred for higher Froude 
numbers. 

The laboratory experiments produced a few flows containing a rotor, i.e. with fairly 
strong reverse flow near the valley floor, and with the streamlines concave up above 
the crests. The rotors occurred close to the values predicted by a simple linear theory 
of waves in a stratified fluid. Turner (1973) gives the relation 

w = Nk/(k2+ m2)) ( 6 )  
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for the frequency w of an internal wave with wavenumber ( k ,  m )  for a linear density 
gradient in the Boussinesq approximation. For wave resonance to occur in a bounded 
domain, mD = jn, j = 1, Z . . . ,  and w = k%, which together with (5 ) ,  k = 2n/L and the 
definition of F gives F = DL/nh(4D2 + j2L2)4. ( 6 )  

Rotors were observed in the laboratory flows in two cases, when D / h  = 3, F = 0-85 and 
D / h  = 4-65 ,  F = 1-12. Equation ( 6 )  withj = 1 predicts values of F of 0.82 and 1.08 for 
these values of D/h, so that the agreement is close enough to conclude that rotors occur 
near the internal wave resonance. Note too that equation ( 6 )  is approximately 
F = D/(hjn), i.e. F is proportional to D/h, which is different from the constant F 
behaviour of the critical line separating stagnant and sweeping flows. Rotors did occur 
in the numerical experiments, but were not as pronounced as in the laboratory experi- 
ments, probably because the implicit diffusion in the numerical integratjons provided 
greater damping, and because of the rigid lid in the numerical experiments compared 
with the free surface in the laboratory experiments. 

A diagram of all the experimental runs as a function of D / h  and F is shown in 
figure 7. This compares well with the similar figure 5 for the numerical integrations. 
Again, the constant F =. 1.3 is a good approximation to the dividing line. 

5. Conclusion 
Sweeping occurs when the inertial forces dominate the buoyancy forces; stagnation 

occurs when the buoyancy forces dominate the inertial forces. The critical case occurs 
when these forces balance, and since the Froude number expresses the ratio of these 
forces, the critical case is expected to occur when the Froude number is of order unity. 
Both the numerical and laboratory experiments indicate that a constant Froude 
number of about 1-3 can be used to separate stagnant from sweeping flows over a 
valley, with stagnant flows occurring for values of F less than 1.3 and sweeping flows 
otherwise, provided that the ratio of the total depth to the crest to trough depth is 
greater than about 1.8. This result is independent of the slope of the valley sides and 
the total depth. For D / h  < 1.8, the flow tends to stagnate, although non-hydrostatic 
effects and the magnitude of the valley slope become important. Small values of D / h  
are not particularly relevant to the atmosphere since it is unlikely that a strong 
inversion acting as the rigid top of the model could be found so close to the ground so 
that D / h  < 1.8. 

We thank George Scott end David Murray for assistance with the laboratory work 
and Ian Helmond for the use of his density probe. 

REFERENCES 

ARAKAWA, A. 1966 Computational design for long-term numerical integration of the equations 
of fluid motion: two-dimensional incompressible flow. Part 1. J. Comput. Phys. 1, 119-143. 

ASHE, W. F. 1952 Acute effects of air pollution in Donora, Pennsylvania. In Air Pollution 
(ed. L. C. McCabe), pp. 455-462. McGraw-Hill. 

BAINES, P. G. 1977 Upstream influence and Long’s model in stratitied flows. J .  IiZuid Mech. 82, 

Cox, R. A. 1977 Field studies of local weather and its effects on air pollution at a proposed 
147-160. 

industrial site. Weather 32,42-56. 



Valley ventilation by crosa winds 767 

GEIGER, R. 1965 The Cl.imate Near the Qroud.  Cambridge, Massachusetts: Harvard University 
Pra33. 

GREEN, R. A. 1970 The weather and circulation of November, 1969. Monthly Weather Rev. 98, 
170-174. 

US, E. 1955 Zur Frage der Durchliiftung von Tiilern im Mittelgebirge. Meteorol. Runds. 8 ,  

KITABAYASHI, K. 1977 Wind tunnel and field studies of stagnant flow upstream of a ridge. 
J .  Met. SOC. Japan 55, 193-204. 

MAHRER, Y.  & PIELICE, R. A. 1978 A test of an upstream spline interpolation technique for the 
advective terms in a numerical mesoscale model. Monthly Weather Rev. 106, 818-830. 

ROACHE, P. J .  1972 Computational Fluid Dynamics. Albuquerque, New Mexico: Hermosa. 
TANG, W. 1976 Theoretical study of cross-valley wind circulation. Arch. Met. Geophys. Bioklim. 

THOMPSON, R. 0. R. Y. 1979 A stable third-order time-integration method with minimal 

THYER, N. H. 1966 A theoretical explanation of mountain and valley winds by a numerical 

TURNER, J. S. 1973 Buoyancy Effects in Fluids. Cambridge University Press. 
YOSEINO, M. 1957 The structure of surface winds crossing over a small valley. J.Met.Soc.Japalz 

61-66. 

A 25, 1-18. 

storage. Submitted to Monthly Weather Rev. 

model. Arch. Met. Geophys Bwklim. A 15, 318-348. 

35, 184 195. 



Journal of Fluid Mechanics, Vol. 96, part 4 

BELL AND THOMPSON 

Plate 1 

(Facing p .  768) 


